The data doctor continues his exploration of Python-based machine learning techniques, explaining binary classification using logistic regression, which he likes for its simplicity. The goal of a ...
Logistic regression is a powerful statistical method that is used to model the probability that a set of explanatory (independent or predictor) variables predict data in an outcome (dependent or ...
Dr. James McCaffrey from Microsoft Research presents a complete end-to-end program that explains how to perform binary classification (predicting a variable with two possible discrete values) using ...
eSpeaks’ Corey Noles talks with Rob Israch, President of Tipalti, about what it means to lead with Global-First Finance and how companies can build scalable, compliant operations in an increasingly ...
Logistic regression is often used instead of Cox regression to analyse genome-wide association studies (GWAS) of single-nucleotide polymorphisms (SNPs) and disease outcomes with cohort and case-cohort ...
As the coronavirus disease 2019 (COVID-19) pandemic has spread across the world, vast amounts of bioinformatics data have been created and analyzed, and logistic regression models have been key to ...
Logic regression has been recognized as a tool that can identify and model non-additive genetic interactions using Boolean logic groups. Logic regression, TASSEL-GLM and SAS-GLM were compared for ...
Multicenter Phase I/II Study of Cetuximab With Paclitaxel and Carboplatin in Untreated Patients With Stage IV Non–Small-Cell Lung Cancer Data from 1,066 patients recruited from nine European centers ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results